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Quantum chaos of an ion trapped in a linear ion trap
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We describe the transition to quantum chaos of an ion trapped in a linear ion trap and interacting
with two laser fields. Under the conditions of adiabatic illumination of the upper level of the ion, and
when the frequencies of the two laser beams are slightly different, the system is reduced to a
quantum linear oscillator interacting with a monochromatic wave. The property of localization over
the quantum resonance cells is proposed to exploit in order to facilitate the process of measurement
of the probability distribution of an ion on the vibrational levels. In the regime of strong chaos the
time-averaged values of the energy and dispersion of energy are computed and compared with the
corresponding classical quantities for different values of the perturbation amplitude. In the exact
resonance case, the classical analog of the system possesses an infinite inhomogeneous stochastic
web. We analyze the quantum dynamics inside the inhomogeneous web. It is shown that the
gquantum system mimics on average the dynamics of the corresponding classical system. Formation
of the quantum resonance cells is illustrated in the case of a finite detuning from the exact resonance,
and under increasing of the wave amplitude. The parameters of the model and the initial conditions
are close to the real physical situation which can be realized in the system of cold trapped ion
perturbed by two lasers fields with close frequencies2@O0 American Institute of Physics.
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The transition to quantum chaos is considered in the sys-
tem of cooled trapped ion perturbed by a monochromatic
field of two lasers with close frequencies. This system is
important for studying conditions of stable operation in
future quantum computer devices. In some region of pa-
rameters, the system is reduced to the quantum harmonic
oscillator interacting with a monochromatic wave. In the

tum mechanic$? for important technological applications
such as optical frequency standardand for quantum
computing*® An ion trapped in an ion trap is considered as
a candidate for realizing quantum logic operations by apply-
ing a laser radiation to the internal degrees of freedom of the
ion®> When the radiation field is rapidly and periodically
switched, this system can be described as a kicked harmonic

case of the exact resonance, the classical phase space posescillator®’ In Ref. 8, a model was proposed in which the
sesses an infinite inhomogeneous stochastic web which trapped ion, perturbed by the field of two laser beams with
separates the classical resonance cells. Inside each cell theclose frequencies, reduces to the model of a harmonic oscil-

classical particles move along regular closed trajectories.
When the wave amplitude increases the width of the web
also increases. It is shown that chaotization of the phase
space leads to increasing the probability of the quantum
particle to move from one quantum cell to another. In the
regime of strong classical chaos, the time-averaged quan-
tities of the energy and the dispersion of energy behave
similarly in both classical and quantum systems. The for-
mation of the quantum resonance cells is demonstrated at
finite detuning from the exact resonance and under in-
creasing of the wave amplitude. The results derived in
this article can be used for understanding the regions of
stability and quantum chaos of an ion in linear ion trap
devices.

I. INTRODUCTION

lator interacting with a monochromatic wave. In this article,
we analyze in detail a transition to quantum chaos in the
model® The results obtained for the quantum model are
compared with the classical dynamics.

As was shown in Ref. 9 the quantum Hilbert space of a
harmonic oscillator interacting with a monochromatic wave
is divided into the quantum resonance cells. The dynamical
manifestation of such a division is the property of localiza-
tion over the quantum resonance cells. In this case, the prob-
ability distribution exponentially drops mainly at the bound-
aries of the cells—quantum web-tori—being on average the
same inside the cells. In this article, we show that with in-
creasing of the wave amplitude, the quantum web-tori be-
come more “penetrating.” This behavior corresponds to in-
creasing of the probability for a quantum particle to travel
between the cells due to the increase of the chaotic compo-
nent in the classical phase space.

Recently, devices based on trapped ions have been used The main difference between the classical and quantum
to investigate experimentally fundamental aspects of quansystems which possess an infinite homogeneous chaotic web
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in the phase space is the phenomenon of dynamical localiza-
tion. Due to this phenomenon, the quantum systems mimics
the dynamics of the corresponding classical analog only dur-
ing a finite time, after which the quantum interference effects
cease the quantum diffusion, while the classical diffusion is
not changed. The dynamical localization was observed in the
kicked rotof® and, under definite conditions, in the kicked
oscillator* The system considered in this article also pos-
sesses an infinite stochastic web, but, unlike the above men-
tioned models, in our case the web is inhomogeneous—the
web’s width decreases with increasing the coordinate or mo-
mentum. The results of this article show that for large times
and in the regime of strong classical chaos no significant
difference was observed in the classical and chaotic average
dynamics.

The investigated classical system has an infinite stochas-

tic web Only in the case of the exact resonance. In any reEEIG. 1. The classical phase space for the harmonic oscillator in the mono-

situation there always is a finite detuning from the exacipromatic wave field, under the condition of exact resonahed; =0.05.
resonance. The size of the web and the number of the resohe separatrix net is indicated by the dashed curves.

nant cells in this case depend on the relation between the
values of the wave amplitude and the detuning from exact ) . .
resonance. It is shown that the formation of quantum resone wave vectore/k is the amplitude of the wavé], is the
nance cells, with increasing the wave amplitude, changes tHdamiltonian of the' unpertgrbed harmonic oscillator. In Eq.
localization properties of the guantum system. When thdl) the same notations as in Ref. 8 are used. _
wave amplitude is small, we observe localization over the ~The system, described by E(l), possesses very inter-
individual levels, which corresponds to absence of the reso2Sting properties? When the resonant condition is satisfied,
nant cells in the phase space. In the case when the wab@ =<, I=1.2...., aninfinitely small perturbation gener-
amplitude is large enough, we observe formation of the p|aates in the classical phase space, an infinite number qf reso-
teaus in the probability distribution which is specific for the Nance cells. The particles move along closed trajectories in-
degenerate system. The transition from one type of localizaSide the cells. The resonance cells are separated from each
tion to another is shown to correspond to a formation of thePther by the separatrix net. This net is covered by stochastic
classical resonant cells in the phase space. Igyers which form the infinite stocha;tlc yveb. U.n('jer the con-
Below, in this article, we used a set of parameters andlition of weak chaoss<1, the web width is negligibly small
initial conditions which allow an experimental verification of @nd almost all classical trajectories are enclosed inside the
obtained results by using the type of ion trap apparatus cui€ells as illustrated in Fig. icasel=4). The phase space is
rently being used to investigate quantum computation. shown in the Fig. 1 in the variablexX(P), whereX=kx
The article is organized as follows. In Sec. Il the transi-2ndP=kp/Mw are, respectively, the dimensionless coordi-
tion to chaos in the classical harmonic oscillator interactingaté and momentum. The phase space has an axial symmetry
with a monochromatic wave is described. In Sec. Ill we©f the order 2. (In Fig. 1 the separatrix net is indicated by
study how a transition to chaos is manifested in localizatiori1® dashed curvesA classical ion trapped in a resonant cell
properties of the quantum system in the case of exact reséemains localized in this cell forever. . _
nance. Time-averaged values of the energy and the disper- It iS more convenient to work with “action-angle” vari-
sion of energy are compared with the corresponding classic@bP!es which can be introduced in the following way. We
quantities at different values of the wave amplitude and th@€rform a transformation from the variablep,X) to the
dimensionless Planck constant. Formation of the quanturf@nonically conjugated variable®{,¢),

resonance cells with_ increasing the wave amplitude is der_n- X=(2P¢/Mw)(l/2)sin(p= r(P,)sing, 2)
onstrated in Sec. IV in the near resonance case. In conclusion s
we outline the results. p=(2P ,Mw)* cosp=Muor(P,)cose, (3

wherer (P,) = (2P, /M w)*?is the amplitude of oscillations.
In these new variables, the Hamiltoniél) is,
Il. CLASSICAL DYNAMICS

€
. ) ] . ) H=P,0+PgQ+ ~cogkrsing—pg), 4
The classical dynamics of the harmonic oscillator inter- k

aCting with a monochromatic wave is described by the\NhereB:Qt_ Here the Variab|esF(B,ﬁ) are also canoni-

Hamiltonian, cally conjugate. The nonlinear perturbation in E4j.can be
P2 Maw? € expanded in the series,
H=ou+— x2+Ecos{kx—Qt)=Ho+V(x,t), )

€ € ”
—cogkrsing—B8)=— Jn(krycogne—p). 5
whereM is the mass of the particl@,is the momentumk is koS ¢=h k n:E—oc n(kncogne=g). (5
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Under the resonance conditiong=3 or lw=1, all terms 20

in the sum in the right-hand side of E¢p) quickly oscillate
and can be averaged out, except for one term witH. In

this approximation, the Hamiltoniaf@) reduces to, 10l

— — €
H=P,0+PgQ+ EJ|(kr)cos(Icp—,3). (6)

It is convenient to introduce the new resonance variables, P ol

(1, 0), (Pz, B), by using the generating function,

F=I(lo—B)+PgB.
The new Hamiltonian,

—-10 +

~ €
H=1(lo—Q)+Pgo+ EJ|(kr)cos¢9, (7) 20| ‘
N B -20 -10 0
is independent of the variablg. Hence,Pz;=const. The X

Hamiltonian,

- _ €
H=H-Pgw=15w+ J(k)cos, 8

wheres=1—Q/w, is called the “resonance Hamiltoniart?’

It is independent of time, unlike the initial Hamiltonidh),

and mainly determines the motion along the closed regular
trajectories inside the resonance cells in Fig. 1. The station-
ary points for the dynamics generated by the Hamiltoi&n
are defined by the equations,

6=0H/a1=0, 1=—9H/96=0,

or

€

E((—T}J,[kr(l)]/al)costﬂ5(»:0, Ji[kr(1)]sing=0.
Positions of the elliptic stationary points are given by the
expressions,

edd[kr(]
kK  al

=Fdw, 60,=0,m, 9
=1,

where the sign “=” corresponds to the value of the angle,
0.=0, and the sign “+" corresponds tof,= . For the
positions of the hyperbolic stationary points we have,

J[kr(1,)]=0, Hh:ig. (10

As one can see from Eq9), in the case of the exact reso-
nance the number of the stable points is infinite. As a con-
sequence, there is an infinite number of the resonance cells.
The hyperbolic stable points are connected by the separatrix =
net, which spans the whole phase space. At the center of _o0 10 o 10 20
each of the cells in this net there is an elliptic stable point X

(9), and the particle moves around the elliptic points alor"gFIG. 2. Resonance cells in the phase space in the coordinétd®) (for |

closed trajethri?S as shown in Fig. 1. =1 and(a) e=0.5, the cells are labeled by numbers from 1 té;e=5; (c)
For a sufficiently largee, chaos destroys the resonant e=10.

cells as shown in Figs.(8), 2(b) in the variables X, P), and

Figs. 3b), 3(c) in the variablegkr(l),6] for the casd=1.  !ll. QUANTUM DYNAMICS FOR THE EXACT
However, influence of chaos on the cells is not equal for alRESONANCE CASE
cells: the cells with small values &t are more destroyed Let us consider influence of chaos on the dynamics in

than the cells with large values &f. the guantum model of a harmonic oscillator interacting with
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\ where we use the same notation as in EL. Since the
Hamiltonian (11) is periodic in time, we use the Floquet

207 theorem, and write the solution of the ScHimger equation
in the form
15 (X, 1) =exp(—iegt/h)ug(Xx,t), (12

i - where # is the Planck constantg, is the quasienergy,
)@ #q(x,t) is the quasienergyQE) function, andugy(x,t+T)

0 | 14 . 1@
=Ug(X,t), with T=27/(.
(C@j( ..:j It is convenient to expand the QE functiong,(x,t), in

the complete set of harmonic oscillator eigenstates,

Ya(x,1) = expl(—ieqt/h) 2, CR(DYn(¥), (13
% 57 1sm a7 where the expansion coefficientSi(t)=CJ(t+T), are the
Angle QE functions in the harmonic oscillator representation. To

find the QE states, we used the following numerical
proceduré®~>The QE states are the eigenstates of the evo-

lution operatorfJ(T), for one period], of the wave field. In
order to construct the matrix),,=(n|U(T)|m), of the op-
erator U(T), we choose the representation of the Hamil-

tonian Hy. Applying the evolution operatoi)(T), to the
wave function(x,0), we have,

O(T)p(x,0)= (x,T). (14
Next, we choose the initial state in the for@;(0)= Sn.n,-
In this way we obtain a column in the evolution operator

matrix,
Uno,n:CﬁnO)(T): (15
-1.57 1.57 47 where the coeﬁicient@ﬁ”o)(T), can be obtained by numeri-
Angle cal solution of the Schiinger equation(the form of the

guantum equations of motion see in Ref).1Bhe values of
matrix elementsJ, ,, depend on three dimensionless pa-
rameters: the dimensionless wave amplitude,e/ (ki w),

the quantum parameten=k?%/M w, which can be treated

as a dimensionless Planck constant, and the Qtie=1

— 0. After diagonalization o, ,,, we obtain the QE func-
tions, Cl=CJ}(mT), m=0,12,..., and thequasienergies,

€q- The QE states can be used to find the state of the quan-
tum system after an arbitrary integer number of period$,

We have

Ca(mN =2 Cp(0)X CIrClexp—iemTa),  (16)
n’ q

where the coefficientsC,,(0), are theamplitudes of the

E s P T L probability distribution at the initial moment= 0.

-157 1.57 471 In the resonance approximation, the QE functions,
Angle C(t), are independent of time and satisfy the system of

algebraic equation®,

FIG. 3. The resonance cells in the phase space in the coordinat@<dr

I=1 and(a) €=0.5, (b) €=5, (c) e=10. q € q q

(Eq_5n)cn:H(Vn,n+ICn+l+Vn,n—ICn—I)1 (17)

the monochromatic wave when the condition of the reso- ) ) ] ) )

nanceQ) =l is satisfied. The quantum Hamiltonian is whereE,=e,/fiw is the dimensionless quasienergy. In this
) ) section, we study the case of exact resonance, wieh.

-~ P Mw® , € N The off-resonant case will be considered in the next section.

=t X+ - —Qt)=Ho+ - -
H=om 7 X otk Oy =Ho+V(xt), (11 The matrix elements in Eq17) have the form®
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FIG. 4. The matrix elements\2, ,.;, vS. n. The resonance cells are la-

beled by numbers from 1 to 5. The arrows indicate the bounddjgs, ,
betweenith andi+1th cells p;,=73, b, =247, b3 ,=518, b, =888,
bs=1357);1=1,h=0.1.

(_ 1)mhmef h/4 S h
Vn,n+2m+1: ml Ln E )
2™ 1/(n+1)- - - (n+2m+1)
(183
(_1)mhme— h/4 5 (h)
= L2m |, 18b
nTEM T omel (1) .- (nt2m) " |2 (185

whereL ' are the Laguerre polynomials. Fe¥- 1, the matrix
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incide with the boundaries of the classical cells, defined by
zeros of the Bessel function in E(LO).

Due to oscillations of the matrix elements with the
three-diagonal systeid7) breaks up into relatively indepen-
dent blocks. As a consequence, the most part of the QE func-
tions are localized inside one of the quantum cells. To show
this, let us characterize each QE function by its average,
=3,n|C? and its dispersiongq=[S,(n—ngy)? CH?]" 2
The plot,ng=ny(ay), is shown in Figs. &)-5(c) for three
values ofe. Each QE function on the diagram is represented
by a single point. One can see that the QE functions are
localized inside the cellgboundaries of the cells in Figs.
5(a)-5(c) are marked by arrows because the averages of
these QE functions are located inside the cells, and their
dispersions are less than the distance to the boundary of the
cell. Each group of states localized in one cell forms a row in
these plots. Besides the localized QE functions, there exist
delocalized QE states which are represented by scattered
points with large dispersiony,. These QE states provide
the diffusion of the particle between the resonant cells. From
comparison of Fig. ) with Fig. 5a), one can see that an
increase ok from 1 to 2 results in decrease in the number of
the delocalized states. The effect of localization of the quan-
tum delocalized states under influence of chaos was studied
in Ref. 15. When we further increase from e=2 to e=3
[see Fig. &c)], the number of the delocalized states increases
again. One can see from Figbb that the localized QE states
split into two groups: the QE states in one group interact
with the QE states of the next cells and shift up; the QE
states in the other group shift down due to interaction with
the QE states of the preceding cell. As shown in Fidp)5
the QE states of the first two cells, &2, strongly interact;
and ate=3 the boundary between the first and second cells

element can be expressed in terms of the Bessel functiondisappears. This corresponds to chaotization of the first two

J 17
m:
1 (_1)mnm+l/267 h/4
\Y, == J v2nh),
n,n+2m+1 2 \/(n+1) . (n+2m+1) 2m+1( )
(199
1 —1)"nMe— h/4
Vv b Jpr(20H). (19h)

eI Nt ) - - - (nt2m)

One can see that matrix element, ., in Eq. (17) oscil-
late as a function ofi. In particular, forl =1, they can be
expressed in terms of the Bessel functidg|y2nh),

1 /n h
Vn,n+1:§ mex4—z)\]l( v2nh).

(20

cells in classical phase space.

A dynamical manifestation of the division of the Hilbert
space into quantum resonance cells is the effect of localiza-
tion of the quantum states within the cells. In other words, if
the initial state is chosen in some resonance cell, then it
remains localized inside this initial cell. In the left side of
Figs. Ga)—6(c) the probability distribution at the time
=1000r, is shown, for three values of. The right side
shows the classical phase space for the same parameters. The
arrows indicate the boundaries of the cells. The initial distri-
bution, indicated in Fig. @ by the dashed line, was:
C,(0)=exp(—n/dn), with 6n=20. This particular form of
the initial distribution can be associated with a finite tem-
perature of the system.

Let us present the initial probability distribution as:

Here the argument of the Bessel function in the quantunP,(0)=|C,(0)|?>=exp(—#wn/7), wherer is the temperature

model is the quantized dimensionless radikis,=+/2nh.
When the transition probabilit}/, ,+ 1, in Eq.(17) is small,

measured in energy units. In dimensionless units, this ex-
pression can be rewritten a8;(0)=exp(—hn/®), where the

the boundaries of quantum resonance cells are defined by thimensionless temperatui®= /(M w?/k?), is measured in

zeros of the Bessel functiody(y2nh). In Fig. 4, the matrix
elements,V, ,,,, are plotted as a function af, and the

the same units as the wave amplitude, The value én
=0/h=20 ath=0.1, which was chosen in our simulations,

boundaries of the resonant cells are marked by arrows. In theorresponds to the dimensionless temperat@e,2. For

quasiclassical limit, whenn—«, h—0, I/l;=hn (I,

ionized calcium withM =6.64x 10”2 g, w =27 X 500 kHz,

=Muw/lk?), the boundaries of the quantum cells, defined byandk=1.58<x 10° cm™ %, the value®=2 corresponds to the

the zeros of the Bessel functiod,(v2nh), in Eqg. (20) co-

temperature of %10 4 K.
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FIG. 5. The averages),, of QE functions vs. their dispersionsy, for
three values of the wave amplitudé) =1, (b) e=2, (c) e=3; I=1,

h=0.1.

As one can see from the left side of Figag almost all
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increasinge (e=2) in Fig. 6b), the second classical cell
[right side in Fig. 6b)] becomes chaotic and as a conse-
quence the boundary between the first and the second cells in
the left side in Fig. &) disappears, and the probability,
|Ch(1)|?, becomes almost independent of whetheis lo-
cated in the first or in second cell. A further increase: fih

left side in Fig. &c)] up to the valuee=3, leads to an in-
crease of the probability in the cells with large values afy

a few orders-of-magnitude.

For experimental investigation of quantum chaos we
propose to use the property of localization in quantum cells,
initially explored in Ref. 9. As one can see on the left side in
Figs. §a)—-6(c), the average probability distribution as a
function of n remains approximately the same inside the
cells, and changes only at the boundaries of the cells. Let us
define the cell’'s probability?; , as the probability of finding
the particle in theith cell. We have:PizEEi“|Cn(t)|2,
where n; and n;,, are the boundaries afth ‘and i+ 1th
cells in the Hilbert space. In Figs(aj—7(c) the probabilities
P; are shown as a function of timep=t/T, for the same
values ofe as in Figs. 5a)—5(c), 6(a)—6(c). One can see that
after a transition period, a cell’'s average probability remains
independent of time.

When the first two classical cells on the right side in Fig.
6(c) become chaotic, the quantum probability redistributes
approximately uniformly between the corresponding quan-
tum cells shown on the left side in Fig(d. In Fig. 7(c), P,
is larger tharP, because the number of levels in the second
cell is larger than the number of levels in the first cell. The
average relative probabilities ar@;/n;~4.1x10"3 and
P,/n,~3.3x10 3.

Since the average cell probabilities do not change with
time, it is reasonable to average them. Time-averaged prob-

abilities P; as a function of the wave amplitude, are pre-
sented in Fig. 8. It is possible to use the dependence shown
in Fig. 8 for comparison with experimental results, namely,
to measure the probability of finding a particle not on a given
level, n, but in a given cellj.

The numerical approach based on using the QE states for
computing the dynamics by E¢L6) is very convenient, be-
cause it allows one to determine the state of the system by a
simple summation. This procedure makes it possible to av-
erage the quantum quantities over large time intervals. We
compared the average energy and the dispersion of energy
for the chaotic classical system and for the corresponding
quantum system. The quantum average energy and the dis-
persion of energy can be measured experimentally. The re-
sults are presented in Figs. 9 and 10. One can see from Figs.
9 and 10 that the average energy and dispersion in the quan-
tum and classical models are approximately the same. The
quantum data are presented for two values of the dimension-
less Planck constanih=0.1 andh=1. One can see that the
value ofh does not affect significantly the chaotic dynamics,
except when the value of is small enoughge<2. In this
region, an increase ih results in an increase in the number
of the delocalized stat¢sepresented by scattered points with

of the initial distribution function is located in the first cell, large dispersions in Fig.(8]. As a consequence, the diffu
and remains localized within the initial cell in subsequentsion rate in Figs. 9 and 10 increases witlincreasing. The

times, when the value o€ is small enough(e=1). With

average in the quantum model at large valueg 66>8 in
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Fig. 9 is less than the average in the classical model. ThisvV. QUANTUM DYNAMICS IN THE NEAR-RESONANCE
difference does not represent any physical effect, and is &@ASE

consequence of the artificial truncation of the Hilbert space:

the guantum Hilbert space used in the calculations is finite, In the preceding section we considered the chaotic dy-
while the classical phase space is infinite. namics for the case of exact resonance. A more common
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for small e. In Fig. 11(b) the probability distribution at time
t=10%T is shown and in Fig. 1) the phase space for the
same parameters as in Figs.(@land 11b) is illustrated.
One can see from Fig. 14 that whens+#0, there are no
delocalized QE functions with large dispersion, as, for ex-

o o
[e)] ~

Cell’s probability
(=]
[3,]

0.4 ample, in Fig. 5a). This is different from the case of the

03 exact resonance, when the separatrix QE states exist at arbi-
trarily small e.X®> As a consequence, there is no tunneling

0.2 between the cells and a quantum state, localized in some

04 region of the Hilbert space, remains localized in the initial
region for any time, as shown in Fig. ). Quantum local-

o¢ 50 100 50 200 ization is the quantum manifestation of localization of clas-
time

sical trajectories in the phase space. At sraathere is only
FIG. 7. Time-evolution of the probability of finding a particle in tile cell. one resonance cell in the classical phase space, as shown in
The cells are labeled by the numbers from 1 th40.1, 1=1: (@ e=1,  Fjg 11(c), the stochastic web is absent, the particle is local-
solid lines:i=1, 2, dashed linei=3; (b) e=2, (c) e=3, circles:i=1, .
squaresi =2, crossesi=3, no symbolsi=4. ized, and cannot travel aI.ong the web. .

One can see from Fig. 18 that QE states in central
situation occurs when the frequencies of the wave and thesgions corresponding to resonant cells are more delocalized
oscillator do not satisfy exactly the resonance condition, i.e.than those near the separatrices. In order to treat this prop-
when 6=1-Q/w#0. In this case, in the classical phaseerty, let us compare the plot of,(o,) with the correspond-
space there exists a finite number of the resonance cellg)g classical phase space. Each valuendh the quantum
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FIG. 9. Time-averaged value of the ener@yan=h(Nguant-1/2), where  FIG. 10. Time-averaged value of the dispersion of the enerf¥yuan
Nguan= Ei'\'j“f"hi INguans Ni= Enn|Cn(ti|2 for the quantum model; and for  =hagay, Where oquan= =%, /Ngyan 0= En(ifﬁi)ZICn(ti)I2 for
the classical modeE = p?/2, wherep2=2iN:°'1p2(ti)/Nd. In the quantum  the quantum model; and for the classical modeE,={S[p(t;)?/2

model, averaging was performed in the time intertai2000T to 12 000r —p2I212INg}*2 In the quantum model, averaging was performed in the
over Ngyan=50 points. In the classical model, averaging was performedtime interval t=2000—12000 over Ng,,=50 points. In the classical
over 15 chaotic trajectories in the time intervad: 50T to 15050 (N model, averaging was performed over 15 chaotic trajectories in the time

=15000); the solid line and circles indicate classical results; the dashed lingterval t=50-15 05@, (N=15 000); the solid line and circles indicate

and squares indicate quantum resultstfer0.1; the dotted line and crosses classical results; the dashed line and squares indicate quantum results for
indicate quantum results fdi=1; |=1. The error bars for the quantum h=0.1; the dotted line and crosses indicate quantum resulth$ot; |

results are of the size of the symbols. =1. The error bars for quantum results are of the size of the symbols.

system corresponds to a quantized classical aclig,,  tum resonance cellsee Ref. 9, Eq(8)] ase increases. This
=nh, wherel ;=M w/Ik?, or to the quantized dimensionless corresponds to formation of classical resonance cells in
radius,kr,= \2nh. Each value of actiot, (or kr,) corre-  phase space, defined by the conditi® The second pro-
sponds to the set of classical trajectories. Moving along theess, which leads to delocalization of the quantum states, is
trajectory the particle can approach the valued pin the  chaotization of the classical dynamics. These two phenom-
interval I, <I,<I, . The corresponding QE state will be ena can be observed on the right side in Fig(al3The
delocalized over the states with the numheis the interval dynamics ate=1 in the region near the first cell is mostly
n;<n<n,. The more curved the trajectory in the phasechaotic, while the sixth cellat 6= 7/2) is not yet formed.
space is, the more spread is the QE state corresponding to Similar features can be observed in the quantum dynam-
this trajectory in the quantum case. In the classical phasis. One can see from Fig. ) that whene is small, the
space in Fig. 1(c) the least curved trajectories correspond toperturbation mostly affects the first two cells, while the prob-
the actiondradii) satisfying the conditior{10). As the con-  ability distribution in the third, fourth, and fifth cells almost
sequence, the quantum states near the wigE 1, /1, (here  coincides with the probability distribution for the initial state.
subscript means “hyperbolic,” andh in the denominator The same features can be observed in the classical phase
means the dimensionless Planck constant k?4/Mw) space in Fig. 1(c). Further increase of, up toe=1, affects
have the smallest dispersions. the quantum and classical dynamics in all cells, as shown in
Modification of the QE states, and modification of the Fig. 13a). The number of the resonant cells in the classical
classical and quantum dynamics at increasing the wave anphase space increagsge Eq(9)], and the Hilbert space on
plitude, ¢, in the near resonance case is shown, respectivelyhe left side in Fig. 1@) begins to divide into cells, too. One
in Figs. 1Za)-12(c) and 13a)-13(c). As one can see from can see the formation of characteristic plateaus in the prob-
Figs. 12a)—12c), the QE states quickly become delocalizedability distribution. Whene=2 the plateaus in the probability
as e increases. The delocalization of the QE functions isdistribution on the left side in Fig. 1B) become more dis-
caused by two processes. The first is the formation of quarcernible. In the classical phase space, for the corresponding
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parameters, the area of resonance cells also increases. Cobpecomes less significant when the radié increases, which
parison of Figs. )—5(c) with Figs. 1Za)—-12c), and Figs. can be seen from the structure of E¢®.and(17) (see also
6(a)—6(c) with Figs. 11b), 11(c), 13(@—-13c) allows us to  Ref. 9. Thus, the structure of the probability distribution in
conclude that the influence of detuning,on the dynamics the left side of Fig. 1&) differs qualitatively from those in
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Fig. 6@, while the left sides of Figs. 18) and G¢c) are  smallkr), where the dynamics, in the cag#0, is similar to
similar. The same can be said about classical dynamics whehat for exact resonance, whei+0. The character of the
we compare Fig. 1@) with Fig. 6(a) and Fig. 18c) with Fig.  localization of quantum states, whenincreases an@+0,

6(c). also changes. Wheais small, we observe the exponential
localization characteristic for nondegenerate system. In this
V. CONCLUSION case, the probability exponentially decreases with the dis-

In conclusion, we have investigated the transition totance from the initial state. Far=1, we observe the local-

guantum chaos of a trapped ion interacting with two Iaserlzation over the cells, charagt_e ristic _for_ the_ degenerate sys-
fields with slightly different frequencies. We compared thet®™M: when the probability _dlstrlbutlon decreases
classical and quantum dynamics in this system. Our a exponentially only at the boundaries of the quantum cells,

proach to the quantum problem is based on the quasiener ing on average the same in the central regions of the cells.
states. It was shown that the Hilbert space of the quantu he transition from one type of localization to another is the

system is reasonable to separate into quantum resonan Bar!‘“m manifes.tat_ion of transition from the classical dy-
cells—similar to the resonance cells in the classical phasgamms characteristic for the nondegenerate system to the

space—and to measure the average quantum probability assical dynamics characteristic for the degenerate system

each cell. This technique will allow one to simplify the mea- 1" discussion of the transition in the classical system see,
surement of the probability distribution, because in this caS(IJOr example, Refs. 12, 19

it is not necessary to measure the probability at a fixed os-

cillator state,n. It is enough to measure the probability dis- ACKNOWLEDGMENTS
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